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Abstract

The fundamental notion of bisimulation has inspired various notions of system
equivalences in concurrency theory. Many notions of bisimulation for various discrete
systems have been recently unified in the abstract category theoretical formulation
of bisimulation due to Joyal, Nielsen and Winskel. In this paper, we adopt their
framework and unify the notions of bisimulation equivalences for discrete, continuous
dynamical and control systems. This shows that our equivalence notion is on the right
track, but also confirms that abstract bisimulation is general enough to capture equiv-
alence notions in the domain of continuous systems. We believe that the unification of
the bisimulation relation for labelled transition systems and dynamical systems under
the umbrella of abstract bisimulation, as achieved in this work, is a first step towards
a unified approach to modeling of and reasoning about the dynamics of discrete and
continuous structures in computer science and control theory.

1 Introduction

In the face of growing complexity of dynamical systems, various methods of complexity

reduction are crucial to the analysis and design of such systems. Hence, the problem of

equivalence of systems is of great importance to systems and control theory [15].

In the computer science community, and in particular in the field of concurrency theory,

researchers have been working on various models and numerous equivalence notions for

these models. Among these, process algebras and the notion of bisimulation are by now well

established [10]. Category theory has been successfully used to understand and compare the

multitude of models for concurrency by Winskel and Nielsen [16]. Related efforts include

the categorically inspired framework for comparing models of computation in [9].

In [2], Joyal, Nielsen and Winskel proposed the notion of span of open maps in an attempt

to understand the various equivalence notions for concurrency in an abstract categorical set-

ting. They also showed that this abstract definition of bisimilarity captures the strong

bisimulation relation of Milner [10]. Subsequently in [4] it was shown that abstract bisim-

ilarity can also capture Hennessy’s testing equivalences [6], Milner and Sangiorgi’s barbed
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bisimulation [11] and Larsen and Skou’s probabilistic bisimulation [8]. More recently, in [5],

Blute et al. formulated a bisimulation relation for Markov processes on Polish spaces in this

categorical framework, extending the work of Larsen and Skou. All this evidence further

attests to the suitability of this abstract definition as an appropriate venue for formulation

of bisimilarity concepts for dynamical, control, and hybrid systems. Other attempts to for-

mulate the notion of bisimulation in categorical language, include the coalgebraic approach

of [1, 13].

In this paper we propose a new equivalence relation for dynamical and control systems

(see also [12]) that we call bisimulation and further show that this equivalence relation is

captured by the abstract bisimulation relation of JNW [2]. This extends the latter abstract

framework to the continuous domain. In this paper, our main focus, besides introducing

a new equivalence relation for dynamical and control systems, is to establish a unification

result for bisimulation of discrete and continuous systems. We postpone the discussion

of the important issue of computational aspects of bisimulation for dynamical systems to

subsequent work.

Our work also demonstrates the usefulness of a categorical language in transferring im-

portant and nontrivial notions between the fields of systems and control theory with a rich

analytic and algebraic structure and automata-based models which are the main models

in computer science. This is especially important for understanding the correct notions of

equivalences for hybrid systems, a subject of our current research.

The rest of the paper is organised as follows: In Section 2, we briefly review the fundamental

notion of categories and the abstract formulation of the notion of bisimilarity. Section

3, then provides the main application of this method in concurrency theory and recalls

that the abstract bisimilarity captures Milner’s strong bisimulation relation. The main

theorems and results of our paper are contained in Sections 4 and 5 where we introduce

and discuss bisimulation relations for dynamical and control systems respectively. Due to

space limitations, we leave the results of Sections 4 and 5 without proof.

2 Abstract Bisimulation

The notion of bisimilarity, as defined in [10], has turned out to be one of the most fundamental

notions of operational equivalences in the field of process algebras. This has inspired a great

amount of research on various notions of bisimulation for a variety of concurrency models.

In order to unify most of these notions, Joyal, Nielson and Winskel gave in [2] an abstract

formulation of bisimulation in a category theoretical setting.

Intuitively category theory discusses a class of objects and their relationship to each other.

In contrast to set theory where the primary notion is that of membership, in category theory

one emphasises the relations between the objects. Hence, a category consists of objects and

morphisms. For example, in the category Set, the objects are sets, and the morphisms

are maps between sets. In the category Grp of groups, the objects are groups, and the
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morphisms are group homomorphisms. In the category Man of smooth manifolds, the

objects are smooth manifolds, and the morphisms are smooth mappings between them. For

formal definitions and details related to the categorical notions used in this paper we refer

the reader to the standard reference [7].

The approach of [2] introduces a category of models where the objects are the systems in

question, and the morphisms are simulations. More precisely, the approach in [2] consists of

the following components:

• Model Category: The category M of models with objects the systems being studied,

and morphisms f : X → Y in M should be thought of as a simulation of system X in

system Y .

• Path Category: The category P , called the path category, where P is a subcategory

of M of path objects and with morphisms expressing how they can be extended.

The path category will serve as an abstract notion of time. Since the path category P is a

subcategory of M of models, time is thus modeled as a (possibly trivial) dynamical system

within the same category M of models. This allows the unification of notions of time across

discrete and continuous domains.

Definition 2.1. A path or trajectory in an object X of M is a morphism p : P → X in M
where P is an object in P .

Let f : X → Y be a morphism inM, and p : P → X a path in X, then clearly f◦p : P → Y

is a path in Y . Note that a path is a morphism in M and so is the map f and hence f ◦ p

is a map in M. This is the sense in which Y simulates X; any path (trajectory) in X is

matched by the path f ◦ p in Y .

The abstract notion of bisimulation in [2] demands a slightly stronger version of simulation

as follows: Let m : P → Q be a morphism in P and let the diagram

P
p- X

Q

m
? q - Y

f
?

commute in M, i.e., the path f ◦p in Y can be extended via m to a path q in Y . Then there

exists r : Q → X such that in the diagram

P
p- X

¡
¡

¡r µ

Q

m
? q - Y

f
?

both triangles commute. Note that this means that the path p can be extended via m to a

path r in X which matches q. In this case, we say that f : X → Y is P-open. It can be

shown that P-open maps form a subcategory of M.
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Proposition 2.1. Let M be a category and P be the subcategory of path objects. Then,

P-open maps in M form a subcategory of M.

The definition of P-open maps leads to the notion of P-bisimilarity. We say that objects

X1 and X2 of M are P-bisimilar, denoted X1 ∼P X2 iff there is another object X, and a

span of P-open morphisms f1 : X → X1 and f2 : X → X2 as shown below.

X

ª¡
¡

¡f1 @
@

@
f2

R

X1 X2

The relation of P-bisimilarity between objects is clearly reflexive (identities are P-open) and

symmetric. It is also transitive provided the model category M has pullbacks, due to the

fact that pullbacks of P-open morphisms are P-open (see [2] for a proof). Indeed suppose

X1 ∼P X2 and X2 ∼P X3, then X1 ∼P X3 as can be seen from the following diagram.

Y

ª¡
¡

¡g′1 @
@

@
f ′2
R

X X ′

ª¡
¡

¡f1 @
@

@
f2

R ª¡
¡

¡g1 @
@

@
g2

R

X1 X2 X3

We will see in the upcoming sections below that not all model categories that we consider

have pullbacks of all morphisms, in particular the category of smooth manifolds and smooth

mappings does not have pullbacks of all morphisms. We discuss the solution to this problem

in the sections below.

3 Bisimulations of Transition Systems

We briefly illustrate how the framework described in Section 2 results in the usual notion

of bisimulation in the sense of Milner [10], for details see [2]. The definitions of transition

systems are slightly adapted from [16].

Definition 3.1. A transition system T = (S, i, L,−→) consists of the following:

• A set S of states with a distinguished state i ∈ S called the initial state.

• A set L of labels

• A ternary relation −→⊆ S × L× S

We form the model category of transition systems T with objects being transition systems

and a morphism f : T0 → T1 (with Tk = (Sk, ik, Lk,→k) for k = 0, 1) given by f = (σ, λ)

where σ : S0 → S1 with σ(i0) = i1 and λ : L0 → L1 a partial function such that
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1. (s, a, s′) ∈−→0 and λ(a) defined, implies (σ(s), λ(a), σ(s′)) ∈−→1 and

2. (s, a, s′) ∈−→0 and λ(a) undefined, implies σ(s) = σ(s′).

In order to discuss the usual bisimilarity of transition systems we need to restrict our model

category to the subcategory TL of transition systems with the same label set L and morphisms

of the form f = (σ, idL) which preserve all the labels. The category TL has both binary

products and pullbacks.

We define the path category BranL as the full subcategory of TL of all synchronisation

trees with a single finite branch (possibly empty). Now a path in a transition system T

in TL is a morphism p : P → T in TL, with P an object in BranL. Clearly this simply

means that we look at the traces of the transition system. The P-open maps in TL are now

characterized.

Proposition 3.1. The BranL-open morphisms of TL are morphisms (σ, idL) : T → T ′ with

T, T ′ ∈ TL such that:

If σ(s)
a−→ s′ in T ′, then there exists u ∈ S, s

a−→ u in T and σ(u) = s′.

We now recall the strong notion of bisimulation introduced in [10]. Let T0 and T1 be two

transition systems in TL.

Definition 3.2. A binary relation R ⊆ S0×S1 is a strong bisimulation if (s, t) ∈ R implies,

for all α ∈ L:

(i) Whenever s
α−→ s′ then, there is t′, t

α−→ t′ and (s′, t′) ∈ R,

(ii) Whenever t
α−→ t′ then, there is s′, s

α−→ s′ and (s′, t′) ∈ R.

Transition systems T0 and T1 are called strongly bisimilar, written T0 ∼ T1, if (i0, i1) ∈ S
for some strong bisimulation relation S. The following theorem, proven in [2], shows that

the abstract notion of BranL-bisimilarity coincides with the traditional strong notion of

bisimulation.

Theorem 3.1 ([2]). Two transition systems (hence synchronisation trees) over the same

labelling set L, are BranL-bisimilar iff they are strongly bisimilar in the sense of Milner [10].

In the next sections, we consider the notion of P-bisimilarity in the category of dynamical

and control systems.

4 Dynamical Systems

A dynamical system or vector field on a manifold M is a smooth section of the tangent bundle

on M , that is a smooth map X : M → TM such that πMX = idM where πM : TM → M is

the canonical projection of the tangent bundle onto the manifold M .
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We proceed to define the model category Dyn of dynamical systems. The objects in Dyn

are dynamical systems X : M → TM where M is smooth manifold. A morphism in Dyn

from object X : M → TM to object Y : N → TN is a smooth map f : M → N such that

M
f - N

TM

X
? Tf- TN

Y
?

commutes. Thus related systems are said to be f -related. The identity morphisms and

composition are induced by those in the category Man of smooth manifolds and smooth

mappings.

We proceed to define the path category P as the full subcategory of Dyn with objects

P : I → TI where I is an open interval of R and hence a manifold. We also assume that

0 ∈ I. Moreover, I is parallelizable (trivializable), that is TI ∼= I × R. Note that a path

object represents the differential equation dx(t)/dt = 1, with the canonical choice for the

section, that is P (t) = (t, 1). This in turn represents a clock running on the interval I.

Definition 4.1. A path or trajectory in a dynamical system X : M → TM is a morphism

c : P → X in Dyn, where P is an object in P . More explicitly, a path c is a map c : I → M

such that the following diagram commutes.

I
c- M

TI

P
? Tc- TM

X
?

This means that a path in X is a smooth map c : I → M for some open interval I such

that c′(t) = X(c(t)) for all t ∈ I. Thus, a path in X is just an integral curve in M . Observe

that given a path c in X, and f : X → Y , then f ◦ c is a path in Y . This is the sense of Y

simulating or over-approximating X.

The next issue to understand is the meaning of path extension. Suppose P : I → TI

and Q : J → TJ are objects in P with I, J open intervals in R containing the origin, and

m : P → Q. Then, m is a smooth map from I to J , such that m′(t) = 1 or m(t) = t− t0 for

some t0 ∈ I and for all t ∈ I.

We now introduce the following notation: let φX(x1, x2) denote the predicate that system

X evolves from state x1 to state x2. Hence, φX(x1, x2) is true iff there is an open interval I

in R containing the origin, a path c : I → M such that c(0) = x1 and c(t) = x2, for some

t ∈ I. With this predicate, the characterization of P-open maps is given by the following

proposition.

Proposition 4.1. Given the dynamical systems X on M and Y on N , f : X → Y is P-open

if and only if
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For any state x1 ∈ M of X, if φY (f(x1), y2), then there exists x2 ∈ M such that

φX(x1, x2) where y2 = f(x2).

In the particular case where vector fields are complete, that is solutions exist for all time,

the previous proposition takes the following form.

Proposition 4.2. Let X and Y on manifolds M and N respectively be complete vector fields.

Then any f : X → Y is P-open.

Recall that by the general definition in Section 2, two objects X1 and X2 in the model

category are bisimilar if there is a span of open maps, that is an object X with open maps

f1 : X → X1 and f2 : X → X2. The bisimulation relation has to be an equivalence

relation and for that purpose one requires the existence of pullbacks in the underlying model

category. As is well known in differential geometry [3], in Man arbitrary pullbacks do not

exist. Structure needs to be imposed on the maps in order to guarantee that pullbacks exist.

Definition 4.2. Given smooth manifolds M and N , a smooth map f : M → N and x ∈ M ,

let Txf : TxM → Tf(x)N be the derivative of f . We say that:

(i) f is an immersion at x if the map Txf is injective.

(ii) f is a submersion at x if the map Txf is surjective.

Definition 4.3. Let M, N be smooth manifolds and f : M → N be a smooth mapping and

P be a submanifold of N . The map f is transversal over P iff for each x ∈ M such that

f(x) lies in P , the composite

Tx(M)
Txf−→ Tf(x)(N) → Tf(x)(N)/Tf(x)(P )

is surjective.

In particular, if for every x ∈ M , Txf is surjective, that is, if f is a submersion on M ,

then the composite in the definition above will be surjective and hence every submersion

f : M → N is transversal on every submanifold P of N .

Definition 4.4. Given smooth maps f : M → P and g : N → P , we say that f and g are

transversal if f × g : M ×N → P × P is transversal on the diagonal subset ∆P of P × P .

Proposition 4.3 ([3]). Let M and N be smooth manifolds and f : M → N a smooth map,

then graph(f) is a smooth submanifold of M ×N .

Proposition 4.4. The category Man has transversal pullbacks.

Obviously transversality is a sufficient condition and hence there are other pullbacks in

the category Man. In view of this proposition we have the following result.
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Proposition 4.5. Pullback of submersions exists in Man. Moreover, the pullback of any

submersion is a submersion.

After all these preliminary results in the category Man of manifolds, we can finally get to

our desired goal in the category of dynamical systems.

Proposition 4.6. The category Dyn has binary products and transversal pullbacks.

In this case, as we have seen above, we can only guarantee the transversal pullbacks.

Hence we modify the definition for P-bisimulation to ensure that it becomes an equivalence

relation. That is we require that there be a span of open submersions.

Definition 4.5. We say that two dynamical systems X1 and X2 are P-bisimilar if there

exists a span of open submersions (Z, f1 : Z → X1, f2 : Z → X2).

Note that if there exists an open submersion f : X1 → X2, or an open submersion g :

X2 → X1, then X1 and X2 are P-bisimilar. The spans are (X1, idX1 , f) and (X2, g, idX2)

respectively. The existence of transversal pullbacks in Dyn allows us to show the following

result.

Proposition 4.7. The relation of P-bisimilarity is an equivalence relation on the class of

all dynamical systems.

In order to define bisimilar vector fields, we need a well behaved notion of a relation. The

following definition which seems to be new, is inspired by a relevant definition for equivalence

relations on manifolds [3, 14].

Definition 4.6. Let M and N be smooth manifolds and R be a relation from M to N , that

is to say R ⊆ M ×N . We say that R is regular iff

• R is a smooth submanifold of M ×N ,

• the projection maps π1 : R→ M and π2 : R→ N are submersions.

Proposition 4.8. Let X, Y and Z be smooth manifolds and R ⊆ X × Y and S ⊆ Y ×Z be

regular relations. Then S ◦ R ⊆ X × Z is a regular relation.

Definition 4.7. Given two dynamical systems X on M and Y on N , we say that a relation

R ⊆ M ×N is a bisimulation relation iff

1. R is a regular relation,

2. for all (x, y) ∈ M ×N , (x, y) ∈ R implies

• if φX(x, x′), there exists y′ ∈ N such that φY (y, y′) and (x′, y′) ∈ R
• if φY (y, y′), there exists x′ ∈ M such that φX(x, x′) and (x′, y′) ∈ R
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We say that two dynamical systems X and Y on manifolds M and N respectively are

bisimilar if there exists a bisimulation relation R ⊆ M × N such that for all x ∈ M there

exists a y ∈ N with (x, y) ∈ R and vice-versa.

Theorem 4.1. Given dynamical systems X and Y on manifolds M and N respectively, X

and Y are bisimilar iff they are P-bisimilar, i.e. X ∼P Y .

The above theorem shows that the abstract notion of P-bisimilarity coincides with the ex-

pected and natural notion of bisimulation for dynamical systems. We now turn our attention

to control systems.

5 Bisimulations of Control Systems

We define the model category Con as follows. Objects of Con are control systems over

manifolds, a control system X over a manifold M is given by a pair (UM , XM) where XM :

M × UM → TM is a smooth map such that πMXM = π1 with πM the canonical tangent

bundle projection. Here UM is a smooth manifold called the input space. A morphism in

Con from a control system X = (UM , XM) to Y = (UN , YN) is given by a pair (φ1, φ2) of

smooth maps with φ1 : M × UM → N × UN and φ2 : M → N , such that

M × UM

φ1- N × UN M × UM

φ1- N × UN

TM

XM
? Tφ2 - TN

YN
?

M

π1
? φ2 - N

π1
?

both commute. Thus related control systems are said to be (φ1, φ2)-related [12]. Note that

since π1 is a surjective map, φ2 is uniquely determined given φ1. The identity morphism

idX : X → X is given by idX = (idM×U , idM) for any object X in Con and given f : X → Y

and g : Y → Z, the composite gf : X → Z is given by gf = (g1f1, g2f2).

The path category P is defined as the full subcategory of Con with objects control systems

(UI , PI) where UI is the singleton space with trivial topology and thus I × UI
∼= I. Hence

PI : I → TI with P (t) = (t, 1) for all t ∈ I. I is an open interval of R containing the origin.

Thus (I, PI) is a well defined control system.

Definition 5.1. A path in a control system X = (UM , XM) is then a morphism c = (c1, c2)

in Con with c1 : I → M × UM and c2 : I → M such that

I
c1- M × UM I

c1- M × UM

TI

PI
? Tc2 - TM

XM
?

I

idI
? c2 - M

π1
?

commute.
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This means that a path in X is a pair of smooth maps c1 : I → M × UM and c2 : I → M

for some open interval I such that c′2(t) = X(c2(t), u(t)) for all t ∈ I, where u(t) = π2c1(t).

Let (I, PI) and (J,QJ) be two path objects in P and m = (m1,m2) : P → Q be a path

extension. Then from the diagram on the right above we get that m1 = m2 : I → J and then

the diagram on the left coincides with the condition we had for dynamical systems. Thus a

path extension m = (m1,m2) is of the form m1 = m2 : I → J , m1(t) = t− t0 for t0 ∈ I and

for all t ∈ I.

Proposition 5.1. The category Con has binary products and transversal pullbacks.

We introduce the following notation: let φX(x1, x2) denote the predicate that system

X = (UM , XM) evolves from state x1 to state x2 under some input in UM . Hence, φX(x1, x2)

is true iff there is an open interval I of R containing the origin, a path c = (c1, c2) such

that c2(0) = x1 and c2(t) = x2, for some t ∈ I. The input deriving the system is given by

π2c1 : I → UM . Similarly to the case of dynamical systems, we characterize the P-open

maps as follows.

Proposition 5.2. Given the control systems X = (M, XM) and Y = (N, YN), f : X → Y

is P-open iff

For any state x1 ∈ M of X, if φY (f(x1), y2), then there exists x2 ∈ M such that

φX(x1, x2) where y2 = f(x2).

Definition 5.2. We say that two control systems X1 and X2 are P-bisimilar if there exists

a span of open submersions (Z, f1 : Z → X1, f2 : Z → X2).

Proposition 5.3. The relation of P-bisimilarity is an equivalence relation on the class of

all control systems.

We define the bisimulation relation for control systems, similarly to the case of dynamical

systems.

Definition 5.3. Given two control systems X = (UM , XM) and Y = (UN , YN), we say that

a relation R ⊆ M ×N is a bisimulation relation iff

1. R is a regular relation,

2. for all (x, y) ∈ M ×N , (x, y) ∈ R implies

• if φX(x, x′), there exists y′ ∈ N such that φY (y, y′) and (x′, y′) ∈ R
• if φY (y, y′), there exists x′ ∈ M such that φX(x, x′) and (x′, y′) ∈ R

We say that two control systems X and Y as above are bisimilar if there exists a bisim-

ulation relation R ⊆ M × N such that for all x ∈ M there exists a y ∈ N with (x, y) ∈ R
and vice-versa.
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Theorem 5.1. Given control systems X = (UM , XM) and Y = (UN , YN), X and Y are

bisimilar if and only if they are P-bisimilar, i.e. X ∼P Y .

The above theorem, shows how the categorical notion of bisimulation described in Section 2,

also captures the expected notion of bisimulation for control systems.

6 Conclusions and Future Work

In this paper we propose a new equivalence notion for dynamical and control systems that we

called bisimulation, we also proved that this definition is captured in both cases (dynamical

and control systems) by the abstract bisimulation of JNW. As a natural extension of the

present work, currently we are studying the formulation of bisimulation relation for hybrid

dynamical systems and algebraic characterisations for bisimilarity that can lead to efficient

computational methods. The abstract bisimilarity is also well connected with logic and game

characterisations of bisimulation and presheaf semantics in the case of concurrency models

[17]. Currently ongoing work includes the study and development of similar connections for

dynamical, control and hybrid systems. In this way, we hope to get a natural specification

logic for the description of properties of such systems. We hope that the present work can

provide a framework general enough, thanks to category theoretical tools, in which to study

a unified approach to the dynamics of discrete and continuous systems.
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