
Submodule construction from concurrent system specificationsq

E. Haghverdi, H. Ural*

School of Information Technology and Engineering, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, Ontario KIN 6N5, Canada

Received 1 June 1998; received in revised form 17 December 1998; accepted 17 February 1999

Abstract

The submodule construction problem (SCP) as stated and formulated by Merlin and Bochmann [P. Merlin, G.V. Bochmann, On the
construction of submodule specification and communication protocols, ACM Trans. Prog. Lang. Sys., 5(1) (1983) 1–25] is considered: given
the specification of a system (module) and that of itsn 2 1 submodules, determine the specification of thenth submodule that together with
the givenn 2 1 submodules will satisfy the given system specification. We recast SCP in a formal setting and proceed to present and prove
the correctness of an algorithm for the solution of SCP where submodules are prefix-closed finite state machines.q 1999 Elsevier Science
B.V. All rights reserved.

Keywords:Concurrent systems; Stepwise refinement; Submodule construction problem

1. Introduction

The problem of designing concurrent systems for distrib-
uted applications has been an active area during the last
decade. The complexity of designing such systems has led
the designers to stepwise refinement techniques where the
specification of a given system is decomposed into interact-
ing modules which in turn are decomposed into submodules
until a satisfactory level of decomposition of the system
functionality is achieved. The following problem, referred
to as submodule construction problem (SCP), arises in this
context: given the specification of a system (module) and
that of itsn 2 1 submodules, determine the specification of
the nth submodule that together with the givenn 2 1
submodules will satisfy the given system specification. A
particular instance of this problem can be given for commu-
nication protocols. In this case the specifications for the
communication services to be provided by the protocol
and by the underlying layer are given. The specification of
one of the protocol entities is also given and the task is to
derive the specification of the other protocol entity [8,10].

SCP is formulated and treated by Merlin and Bochmann
[4]. They give a formula which defines the specification of
the unknown submodule in the general case where submo-

dule specifications are given in terms of sets of possible
execution sequences. They find the most general specifica-
tion possible for the unknown submodule. The treatment
and presentation of [4] is to a large extent informal. This
obscures the main ideas presented in the article and makes a
mathematical and formal analysis of the material presented
therein very difficult.

In this article we recast the material presented in [4] in a
more formal and mathematically more precise way. We next
consider the case where the submodules are given by finite
state machines (FSM) and present an algorithm for SCP.
The algorithm is then proven to be correct.

Beside treating the material in [4] in a more formal way,
our work extends theirs along the following lines: (1) we
present and prove correct an algorithm for the solution of
SCP in the case of FSM modules, whereas in [4] no explicit
algorithm is given for the solution of SCP. (2) Although not
explicitly mentioned in [4], the examples considered there
involve FSMs with all states as accepting states. Our
proposed algorithm, however, handles the general case
where each module is considered to be a prefix-closed
FSM (i.e. it accepts prefix-closed languages) with arbitrary
accepting states (cf. Example 1). Hence, the examples trea-
ted in [4] are special cases of SCP that can be solved by our
algorithm (cf. Example 3). (3). The proposed algorithm
produces a prefix-closed FSM, however the method in [4]
does not yield a prefix-closed module in general.

The rest of the article is organized as follows: in Section 2
we recast the material presented in [4] and formulate the
main result presented there in Proposition 1 and Theorem 1.

Information and Software Technology 41 (1999) 499–506

0950-5849/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00014-2

q This work is supported in part by the Natural Sciences and Engineering
Research Council of Canada under grant number STR0149338.

* Corresponding author. Tel.:1 1-613-562-5800; fax:1 1-613-562-
5185.

E-mail address:ural@site.uottawa.ca (H. Ural)

In Section 3 we present our algorithm for SCP and prove it
correct. This is followed by some examples in Section 4.
Finally in Section 5 we discuss the remaining problems, the
related work and conclude with proposed directions for
future work.

2. Submodule construction problem

Throughout this section,Mi is used to denote a module or
a submodule,Vi is used to denote the set of atomic actions
that are executed byMi, andSi is used to denote the speci-
fication ofMi as the set of all possible execution sequences
of Mi . Let M0 be a module which is to be decomposed into
submodulesM1 andM2 and let specifications ofM0 andM1

be given. LetV0 andV1 denote the sets of atomic actions and
let S0 and S1 denote the sets of all possible execution
sequences ofM0 and M1 respectively. ClearlyS0 # V0*
and S1 # V1* : �S0; the complement ofS0 is taken with
respect toV0* i.e. �S0 � V0* 2 S0: The submodule construc-
tion problem (SCP) can be formulated as follows:

Given moduleM0 and submoduleM1 and the setsV0, S0,
V1 andS1, find a submoduleM2 with S2 # V2* ;V2 � �V0 2
V1�< �V1 2 V0� such that:

PV0
�S1 × S2� # S0

where the product ‘× ’ is defined as:Sj × Sk � { s [�Vj <
Vk�* uPVj

�s� [Sj ∧ PVk
�s� [Sk} where Sj # Vj* and Sk #

Vk* and projectionPV : U* ! V* with U, V two sets of
actions andV # U; is defined as:

PV�1� � 1

PV�a·s� �
a·PV�s�; if a [V;

PV�s� if a Ó V:

(
Note thatV2 consists of those actions that are not both inV0

andV1. That is, the actions on whichM0 andM1 synchronize
(i.e. the actions appearing with the same name both inV0

andV1) are not in the action setV2 of M2.
The above formulation of SCP considers the case where a

given moduleM0 is decomposed into two submodules,M1

andM2, i.e. n � 2. As stated in Section 1, this formulation
adheres to the stepwise refinement approach where the
specification of a module is decomposed into interacting
submodules which in turn are decomposed into their submod-
ules until a satisfactory level of decomposition is achieved.
That is, whenn . 2, M0 stands for the given module,M1

stands for the composition of the givenn 2 1 submodules,
and M2 stands for thenth submodule. Below we give the
proof of the proposition given in [4] for completeness.

Proposition 1 (Merlin and Bochmann [4]). Suppose
V2 # V0 < V1; then the sequences s2 in PV2

�S0 × S1� are
exactly those sequences over V2 for which

PV0
�S1 × { s2} �> S0 ± B:

Proof. Let V � V0 < V1; s2 [PV2
�S0 × S1� , 's [S0 ×

S1; s [V* such that PV2
�s� � s2, PV0

�s� [S0 and
PV1
�s� [S1 and PV2

�s� � s2, 's0 [S0; s0 [V0* such
that PV0

�s� � s0 and PV1
�s� [S1 and PV2

�s� �
s2, 's0 [S0 such thatPV0

�s� � s0 ands [�S1 × { s2} �,
's0 [S0 such thats0 [PV0

�S1 × { s2} �: But s0 [S0; so
s0 [PV0

�S1 × { s2} �> S0; hence PV0
�S1 × { s2} �> S0 ± B

whereB denotes the empty set.A

Corollary 1. The sequencess2 in PV2
� �S0 × S1� are exactly

those sequences onV2 for which PV0
�S1 × { s2} �> �S0 ± B:

Below we formalize theStatement about the Construc-
tion of Submodule Specificationsin [4] as Theorem 1 and
provide a formal proof.

Theorem 1. Given M0, V0, S0, M1, V1, S1, andV2 � �V0 2
V1�< �V1 2 V0�;S2 � PV2

�S0 × S1�2 PV2
� �S0 × S1� is the

maximal set satisfying the following; PV0
�S1 × S2� # S0:

Proof. For s2 [S2; we have:
s2 [PV2

�S0 × S1�; hence by Proposition 1PV0
�S1 ×

{ s2} �> S0 ± B ands2 Ó PV2
� �S0 × S1�: Hence by Corollary

1 PV0
�S1 × { s2} �> �S0 � B; thereforePV0

�S1 × { s2} � # S0:

To see this, lets [PV0
�S1 × { s2} �2 S0; thens [PV0

�S1 ×
{ s2} �> �S0; a contradiction. Note thats2 [S2 was chosen
arbitrarily and therefore we havePV0

�S1 × S2� # S0 as
desired.

For maximality ofS2, let S02 # V2* andS2 , S02: Let s [
S02 and PV0

�S1 × { s} � ± B: We havePV0
�S1 × { s} � # S0;

hence PV0
�S1 × { s} �> S0 ± B and PV0

�S1 × { s} �> �S0 �
B: By Proposition 1 and Corollary 1,
s [S2andS02 � S2: A

Next, we give the proposed algorithm for the solution of
SCP and prove its correctness.

3. Proposed algorithm

Definition 1. A finite state machine (FSM)M is a quin-
tuple (Q, S , d , q0, F), whereQ is the finite set of states,S a
finite set of actions,d : Q × S! Q is the transition partial

E. Haghverdi, H. Ural / Information and Software Technology 41 (1999) 499–506500

Fig. 1. Projection example.

function.q0 [Q is the initial state, andF finite set of final
(accepting) states.Q 2 F is the set of nonaccepting states
andd can be extended to strings onS in the standard way
and is denoted here byd*. L�M� � { s [S* ud* �q0; s� [F}
denotes the language accepted byM. For q [Q;S�q�
denotes the set of actions for whichd is defined atq, i.e.,
S�q� � {s [Sud�q;s� is defined}.

We useM, M 0, andMi to denote FSMs.

Definition 2. Given an FSMM � �Q;S; d;q0;F� with
F ± Q; the complement of M is an FSM �M �
� �Q; �S ; �d ;q0; �F� defined as:�Q� Q; �S � S; �d � d;q0� q0
and �F � Q 2 F:

The case whereF � Q involves the addition of an extra
state called thedead statewith the necessary transitions. A
dead state is a nonaccepting state. There is a transition from
each state to the dead state on each action in the action set
for which there is no transition defined for the action in that
state. There is a transition from the dead state to itself for
each action in the action set (for details see [3]).

Definition 3. Given an FSMM � �Q;S; d;q0;F�, letL(M)
be the language accepted byM. Pre(L(M)) is the largest
prefix-closed subset ofL(M). Hence Pre�L�M�� � L�M� iff
M is prefix-closed.

With (sub) modules as prefix-closed FSMs, we have the
following correspondence of the notation used in this
section to the notation used in Section 2: in FSMMi , Si

corresponds toVi andL�Mi� corresponds to Pre(Si).

Definition 4. Given M1 � �Q1;S1; d1;q01;F1� and
M2 � �Q2;S2; d2;q02;F2�, their synchronous product M�
M1 × M2 � �Q;S; d;q0;F� is defined as follows:Q� { �q1;

q2� [Q1 × Q2u's [S* ; d* ��q01;q02�; s� � �q1; q2�}, S �
S1 < S2; q0 � �q01; q02�; F � F1 × F2, and

d��q1;q2�;s�

�

�d1�q1;s�; d2�q2;s��; if s [S1�q1�> S2�q2�;
�d1�q1;s�; q2�; if s [S1�q1�2 S2;

�q1; d2�q2;s��; if s [S2�q2�2 S1;

undefined; otherwise:

8>>>>><>>>>>:
The synchronous product defines the interaction between
FSMs by requiring the actions with the same name in two
FSMs be executed jointly. Such an action cannot be
executed by a single FSM if the other one is not ready to
execute the same action.

Every action ofM1 or M2 occurring in anys [L�M1 ×
M2� is possible iff M1 or M2 participates in that action,
respectively. Hence L�M1 × M2� � { s [�S1 <
S2�* uPS1

�s� [L�M1� and PS2
�s� [L�M2�} : Examples of

the synchronous product are given in Section 4 as part of
the examples of the application of the proposed method.

Definition 5. Given an FSMM � �Q;S; d; q0;F� and a set
D # S, the D-Closure ofq [Q, denoted as ClsD(q), is
defined as:

ClsD�q� � { q0 [Qu's [D* ; d* �q; s� � q0}

Note thatq [ClsD�q� sinceq� d* �q; 1� and1 [D* :

Definition 6. Given M � �Q;S; d;q0;F� andS 0 # S; let
D � S 2 S 0. We define PS 0 �M� � �Q0;S 0; d 0;p0;F 0� as
follows: Q0 � { p [�2Q 2 { B} �u's [S 0* ; d 0* �p0; s� � p} ;
p0 � ClsD�q0�; d 0 : Q0 × S 0 ! Q0; d 0�p;s� �
<g[pClsD�d�q;s��: We set ClsD�d�q;s�� � B whenever
d�q;s� is undefined and we declared 0�p;s� undefined when-
everd 0�p;s� � B. Finally F 0 � { p [Q0up > F ± B}.

Fig. 1 presents the projection of a given FSMM over
{ b,c} as P{ b,c} (M).

Lemma 1. Let M� �Q;S; d;q0;F� and PS 0 �M� �
�Q0;S 0; d 0; p0;F 0� be as in Definition 6. Let L(M) and
L�PS 0 �M�� denote the languages accepted by M and
PS 0 �M� respectively. Then

1. ;t [S 0* :d 0* �p0; t� � p) ;q [p;'s [S* such that
PS 0 �s� � t andd* �q0; s� � q

2. ;s [S* such that PS 0 �s� � t :d* �q0; s� � q) d 0* �p0; t�
� p for some p[Q0, such that q[p.

Proof (Outline). By induction on the length ofs and the
fact thatPS 0 �s1s2� � PS 0 �s1�PS 0 �s2�;s1; s2 [S* : A

Proposition 2. Given an FSM M� { Q;S; d;q0;F�, let
(M) be the language accepted by M. Then L�PS 0 �M�� �
PS 0 �L�M�� where PS 0 �M� � �Q0;S 0; d 0; p0;F 0�.

Proof. Let s [L�M�, then there exists aq [F such that
d* �q0; s� � q. Let PS 0 �s� � t. By Lemma 1,d 0* �p0; t� � p
for somep [Q0 whereq [p. As q [p andq [F,
p > F ± B. Hence t [L�PS 0 �M�� and
PS 0 �L�M�� # L�PS 0 �M��. Now let t [L�PS 0 �M��, then
d 0* �p0; t� � p and p > F ± B: Take q [p > F; by
Lemma 1, there existss [S* , such thatPS 0 �s� � t and
d* �q0; s� � q. Therefore q [F; s [L�M� and
L�PS 0 �M�� # PS 0 �L�M��: A

3.1. Description of the proposed algorithm

Recall that the submodule construction problem

E. Haghverdi, H. Ural / Information and Software Technology 41 (1999) 499–506 501

requires the construction of the specification of an
unknown FSM M2 where the system specificationM0

and the specification of the known submoduleM1 are
given as prefix-closed FSMs. We setM � M0 × M1 �
�Q;S; d;q0;F� and M̂ � �M0 × M1 � �Q̂; Ŝ ; d̂ ; q̂0; F̂�.
Note that Q� Q̂;S � Ŝ ; d � d̂ , and q0� q̂0, however
F ± F̂.

A typical statep of M2 constructed by the proposed algo-
rithm is of the formp� { q1;q2;…;qr } whereqi [Q for all
i [{1 ;2;…; r}.

Definition 7. A statep of M2 is valid if p > F ± 0 andP >
F̂ � B:

Algorithm.

input: M � M0 × M1; M̂ � �M0 × M1;S0;S1

output: M2 � �Q2;S2; d2; p02;F2� if exists and ‘‘No Solu-
tion’’ otherwise.
begin
S2 U �S0 2 S1�< �S1 2 S0�;D U �S0 < S1�2 S2

p02 U ClsD�q0�
if p02 is not valid then report ‘‘No Solution’’, else
begin
newU B; old U { p02} ;Q2 U { p02}
while old ± B do
begin
for p [old do
begin
for s [S2 do
begin
p0 U

S
q[p ClsD�d�q;s��

if p0 ± B andvalid then
begin
d2�p;s� U p0

if p0 Ó Q2 then
begin
Q2 U Q2 < { p0}
newU new< { p0}
end
end

elsed2�p;s� is undefined
end

end
old U new
newU B
end {while}
F2 U Q2

end
end {Algorithm}.

Remark 1. Note that by construction there are no non-
accepting states inM2 (i.e.,Q2� F2), indeed all valid states

are accepting states and invalid states are discarded by the
algorithm. HenceM2 is prefix-closed.

Proposition 3. Let M � M0 × M1; M̂ � �M0 × M1; with
M0, M1 prefix-closed FSMs andM2 be the output of the
proposed algorithm. ThenM2 satisfies the following:

L�M2� � Pre�PS2
�L�M��2 PS2

�L�M̂���

Proof. Note that M2 and PS2
�M� have the same initial

state. Lets [Pre�PS2
�L�M��2 PS2

�L�M̂��� and p be the
sate ofPS2

�M� reached afters, then p > F ± B and p >
F̂ � B: By assumption for alls0 # s; the statep0 of
PS2
�M� reached afters0 is such thatp0 > F ± B andp0 >

F̂ � B: By construction ofM2, d2* �p02; s� � p and hence
s [L�M2�:

Let s [L�M2� then there exists a valid statep [Q2

such thatd2* �p02; s� � p also for all s0 # s; s0 [L�M2�
and d2* �p02; s

0� � p0 is valid. Hence for all s0 # s;
s0 [PS2

�L�M�� 2 PS2
�L�M̂�� and therefore s [

Pre�PS2
�L�M��2 PS2

�L�M̂���: A

Theorem 2. Given prefix-closed FSMsM0 and M1, the
FSM M2 constructed by the proposed algorithm satisfies:

PS0
�L�M1 × M2�� # L�M0�:

Moreover,L(M2) is maximal with this property.

Proof. Recall the following correspondence: each module
is given by a prefix-closed FSM,Si $ Vi ; L�Mi� $ Pre�Si�;
(i � 0,1,2),

PS2
�L�M�� � PS2

�L�M0 × M1�� $ PV2
�S0 × S1�;

PS2
�L�M̂�� � PS2

�L� �M0 × M1�� $ PV2
� �S0 × S1�;

PS0
�L�M1 × M2�� $ PV0

�S1 × S2�:
Note that by Theorem 1, Pre�S2� � Pre�PV2

�S0 × S1�2
PV2
� �S0 × S1�� implies Pre�PV0

�S1 × S2�� # Pre�S0�: By the
correspondence given above and Proposition 3 we have
Pre�PS0

�L�M1 × M2��� # L�M0�: On the other hand,
Pre�PS2

�L�M1 × M2��� � PS2
�L�M1 × M2�� since M1 and

M2 are prefix-closed. ThereforePS0
�L�M1 × M2�� # L�M0�

andL�M2� is maximal with this property. A

4. Examples

Each of the three abstract examples given in this section
to elaborate the details of the proposed algorithm can
be related to a specific domain of application such as

E. Haghverdi, H. Ural / Information and Software Technology 41 (1999) 499–506502

communication protocols. For example, in the case of Alter-
nating Bit protocol,M0, M1, and M2 stand for the service
provided by the protocol, the sender, and the receiver,
respectively.

Example 1. In this example we consider the FSMsM0 and
M1 given in Fig. 2. BothM0 and M1 have nonaccepting
states, denoted by shaded nodes in Fig. 2.S0 � { a; c} ;
S1 � { a; b} ; andS2 � { b; c} : M2 produced by the proposed
algorithm has 3 valid states. In this case we have
PS0
�L�M1 × M2�� � L�M0� � {1;a;ac} :

Example 2. Consider the FSMsM0 andM1 given in Fig. 3.
S0 � { a; b} ; S1 � { a; c;d} ; and S2 � { b; c; d} : M2

produced by the proposed algorithm has 5 valid states. In
this case we havePS0

�L�M1 × M2�� � {1;a; ab} and
L�M0� � �ab�* �1 1 a� and hence, PS0

�L�M1 × M2�� #
L�M0�: In this example we observe that the FSMM2

constructed by the proposed algorithm when interacting
with M1 only partially satisfies the specification given by
M0. That is, the set of execution sequences resulting from
the interactions betweenM1 andM2 is a proper subset of the
set of execution sequences ofM0, PS0

�L�M1 × M2�� ,
L�M0�:

Example 3 (Special case). In this example we consider
the following special instance of the general problem:
M0 andM1 initially given with all states as accepting states.
In this case, a dead state is added toM0 with necessary

E. Haghverdi, H. Ural / Information and Software Technology 41 (1999) 499–506 503

Fig. 2. Example 1.

transitions. This dead state will be the only nonaccepting
state ofM0. The algorithm is simplified in this case as it can
be easily shown that�M0 × M1 � M0 × M1 hence it is suffi-
cient to form only the productM0 × M1; since an accepting
state of �M0 × M1 is a nonaccepting state ofM0 × M1: This
simplified case covers the treatment presented in [4], as can
be seen from the following example adopted from [4] (Fig.
4). In [4] M0 and M1 are called BUFFER and 3-CYCLE
modules respectively and the ‘‘a’’ action of M0 is labelled
as ‘‘put’’. Here, ‘‘ a’’ is used instead of ‘‘put’’ to force the
interaction betweenM0 andM1 on this action.

S0 � { a;get}, S1 � { a;b; c}, and S2 � { b; c; get}. M2

has 3 valid states. In this case, we have
PS0
�L�M1 × M2�� � L�M0� � �a:get�* �1 1 a�.

5. Conclusion and related work

We have presented and proven correct an algorithm that
finds the most general solution to the submodule construc-
tion problem (SCP) where submodules are prefix-closed
FSMs with arbitrary number of final states. The FSMM2,
constructed by the algorithm, may not be minimal (i.e., free
from redundant transitions and states). It is therefore desir-
able to devise a mechanism to guarantee thatM2 is minimal.
Moreover, as stipulated by the definition of SCP (i.e., find
M2 such thatPS0

�L�M1 × M2�� # L�M0��; the interactions
amongM1 and M2 may satisfy only a part ofM0 (i.e., the

set of execution sequences resulting from the interactions
betweenM1 and M2 may be a proper subset of the set of
execution sequences ofM0, PS0

�L�M1 × M2�� , L�M0�:
Since this case cannot be uniformly avoided in general, it
is desirable to establish necessary and sufficient conditions
for finding M2 such thatPS0

�L�M1 × M2�� � L�M0�:
Furthermore, as the formula in [4] and hence our algo-

rithm use the language semantics, they are not sensitive to
deadlock and divergence (infinite invisible loop) anomalies.
We believe that refining the semantic level to failure equiva-
lence will remedy this shortcoming. This may necessitate
the use of refusals set and divergence indices together with
the FSM model. Augmented Hoare machine used in [2] may
be quite fruitful within this context.

Another possible direction for future work is the exten-
sion and formulation of submodule construction problem in
the context of communicating finite state machines
(CFSMs) [1]. The asynchronous mode of communication
between modules in such a framework arises challenging
problems. It is the belief of the authors that a proper defini-
tion of an asynchronous product seems indispensable as a
first step in this treatment. Such an operator will make an
algebraic approach possible for the analysis of the commu-
nication between submodules (CFSMs).

As stated in Section 1, besides treating the material in [4]
in a formal way, our work extends the work of Merlin and
Bochmann [4] to handle the general case for the submodule
construction problem where each module is considered to be

E. Haghverdi, H. Ural / Information and Software Technology 41 (1999) 499–506504

Fig. 3. Example 2.

a prefix-closed FSM (i.e. it accepts a prefix-closed
language) with arbitrary number of accepting states, i.e.
the submodule construction problem studied in [4] is a
special case of the submodule construction problem that is
solved by our method. A limitation noted by Merlin and
Bochmann was that an automatically generated specifica-
tion for a submodule may cause deadlocks which stems
from the fact that trace equivalence is insensitive to dead-
locks.

Several researchers have considered the submodule
construction problem using models and notions of equality
that are different than the ones studied in [4] and in our
work. In [11], the problem is formulated as an equation in
CCS [5,6] of the form�AuX�\L < B where ‘‘u’’ and ‘‘\ L’’ are
thecompositionandrestrictionoperators ofCCSand model
the interaction between the modules and< represents the
observation equivalence. Necessary and sufficient condi-
tions for the existence of solutions of such equations are
given for the case whereB is weakly determinateand
subject to some requirements on the sorts ofA andB. An
algorithm for constructing a solution is presented. This
construction and the requirements for existence of a solution
are formulated in terms of the state spaces ofA andB.

The work by Qin and Lewis [9] extends the work in [11].
They use a finite state machine model consistent with CCS.
An algorithm is presented and proven correct to find the
most general solution if solutions exist, whereB is determin-
istic and X is rigid. The key observation remarked by
authors is the use of set of pairs of states ofA and B to
represent a state ofX. The algorithm presented in [9] gener-
ates states iteratively, beginning from initial state and when

an invalid state is encountered a backtracking is necessary to
remove incoming links to the state and subsequently the
effected states are removed. As a result, extra states are
generated and subsequently removed. This overhead can
be avoided by detecting an invalid state and by not proces-
sing beyond that state. Another shortcoming of this
approach is that the algorithm in [9] may fail to produce
solutions for the instances of the submodule construction
problem which have solutions.

Finally, in [7], the same equation�AuX�\L < B is treated
and a method is presented for solving such equations where
B is deterministic. The method is based on a general tableau
framework where a solution is derived via a sequence of
transformations. Hence, tableau method formalizes the
successive transformational approach to the solution of the
equation. These transformations form a basis for the imple-
mentation of a semi-automatic program. This program
attempts to find a most general solution (a solution which
simulates every other solution). The program performs
some of the transformations automatically, but a user can
effect critical transformations in order to guide the program
towards a suitable solution which may be less general but
smaller in size. A shortcoming of this approach is that alge-
braic approaches such as using derivative operators provide
a much simpler framework to work with and reason about
than that provided by tableau method and their application is
less cumbersome than tableau transformations. Moreover,
the need for heuristics in guiding the program will then be
eliminated since the possibilities of unacceptable solutions
are prohibited by the use of rules stipulated by the algebraic
approaches.

E. Haghverdi, H. Ural / Information and Software Technology 41 (1999) 499–506 505

Fig. 4. Example 3.

References

[1] D. Brand, P. Zafiropulo, On communicating finite-state machines,
Journal of ACM 30 (2) (1983) 323–342.

[2] E. Haghverdi, K. Inan, Verification by consecutive projections, in: M.
Diaz, R. Groz (Eds.), Proceedings of Formal Description Techniques,
V (C-10), Elsevier, 1992, pp. 478.

[3] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, MA, 1979.

[4] P. Merlin, G.V. Bochmann, On the construction of submodule speci-
fication and communication protocols, ACM Trans. Prog. Lang. Sys.
5 (1) (1983) 1–25.

[5] R. Milner, A calculus of communicating systems, Lecture Notes in
Computer Science, 92, Springer, Berlin, 1980.

[6] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[7] J. Parrow, Submodule construction as equation solving in CCS, Theo-
retical Computer Science 68 (1989) 175–202.

[8] R.L. Probert, K. Saleh, Synthesis of communication protocols:
survey and assessment, IEEE Trans. on Computers 40 (4)
(1991) 468–476.

[9] H. Qin, P. Lewis, Factorization of finite state machines under obser-
vation equivalence, Proceedings of International Workshop on Auto-
matic Verification Methods for Finite State Systems, Grenoble,
France,Lecture Notes in Computer Science, 407, Springer, Berlin,
1989.

[10] K. Saleh, Synthesis of communication protocols: an annotated biblio-
graphy, ACM SIGCOMM Computer Communications Review 26 (5)
(1996) 40–59.

[11] M.W. Shields, Implicit system specification and the interface equa-
tion, The Computer Journal 32 (5) (1989) 399–412.

E. Haghverdi, H. Ural / Information and Software Technology 41 (1999) 499–506506

